

PMMA LIFTOFF OPTIONS

This document provides two different recipes for PMMA liftoff pattern transfer for electron beam lithography (EBL) processing.

CONTRIBUTORS:Nathaniel Nelson-Fitzpatrick (advice from Aruna Kroetch)– Bilayer recipeMohammad Ali Mohammad– Single layer recipe

(1) PMMA 495k/950k BI-LAYER LIFT-OFF

- 1. Piranha clean wafers for **15 min**.
- Dehydrate bake wafers at 200 °C for 5 min.
 ➢ Let wafer cool for 2 min.
- 3. Spin on PMMA 495k A2 resist

Step	RPM	Ramp (s)	Time (s)
1	500	5	10
2	4000	10	45
3	4000	3	0
4	-	10	-

- 4. Bake on hotplate at 180 °C for 10 min.
 ➢ Let wafer cool for 2 min.
- 5. Spin on PMMA 950k resist.
 ➤ Identical spin parameters to step 3.
- 6. Bake on hotplate at **180** °C for **10 min**.

Total bilayer resist thickness ~ **120 nm**.

7. EBL exposure parameters

Voltage	Area Dose	Aperture
10 keV	$120 \ \mu C/cm^2$	10 µm

8. EBL development parameters

Temperature	Standard room 22 °C
Development	60 s in MIBK:IPA 1:3
Quench	20 s in IPA
Rinse	15 s in DI H ₂ O
Dry	Nitrogen dry

(2) PMMA 950k SINGLE LAYER LIFT-OFF

- 1. Piranha clean wafers for **15 min**.
- 2. Dehydrate bake wafers at 175 °C for 5 min.
 ➢ Let wafer cool for 2 min.
- 3. Spin on PMMA 950k A1 resist

Step	RPM	Ramp (s)	Time (s)
1	100	2	10
2	2200	4	40

4. Bake on hotplate at **175** °C for **5 min**.

Total resist thickness ~ 45 nm.

5. EBL exposure parameters

Voltage	3 keV
Aperture	10 µm
Area Dose	$600 \ \mu C/cm^2$
Line (SPL) Dose	1.4 - 3.0 nC/cm

6. EBL development parameters

Temperature	- 15 °C (cold plate)	
Development	5 s in MIBK:IPA 1:3	
Quench/Rinse	15 s in IPA	
Dry	Nitrogen dry	

7. Electron beam evaporation parameters

Metal	Base Pressure	Current
Chromium	3×10^{-7} Torr	10 mA
Thickness	Dep. Pressure	Dep. Rate
12 nm	$0.8 imes 10^{-7}$ Torr	0.15 nm/s

- 9. The combination of the above exposure and development steps provides a straight sidewall. Depending on deposition parameters, there can be some minor sidewall coverage. This recipe works best for evaporation and thinner metal layers; however, it has been used for ~ 50 nm thick layers of sputtered Aluminum and Gold successfully.
- 10. Lift-off PMMA layers in an ultrasonic acetone bath. Approx. time ~ 3 min.

8. Lift-off PMMA layer in an ultrasonic acetone bath. Approx. time ~ **3 min**.

When conducting metal deposition for lift-off applications, a general rule of thumb regarding the metal thickness is known as the *one-third rule* i.e., the deposited metal should be no thicker than $1/3^{rd}$ of the resist thickness. This works always for evaporation; however, sputtering may or may not work depending on the sidewall profile.

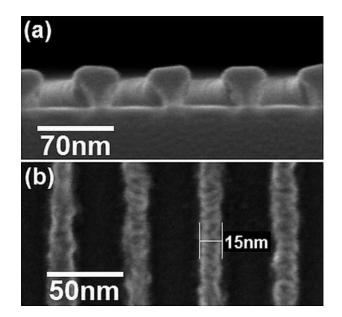

Option (1) is a very good general purpose recipe with lesser restrictions on metal thickness, EBL voltage, EBL development, deposition technique, etc. Option (2) is a more specialized recipe (see Fig. 1) for nanoscale processing; however, it imposes greater restrictions on the aforementioned variables.

Figure 1

(a) Cross-sectional micrograph of 70 nm pitch gratings in PMMA exposed at 3 keV and developed with -15 °C MIBK:IPA (1:3) in order to get large undercuts for single layer lift-off while maintaining high resolution and (b) top-view micrograph of 12 nm thick and 50 nm pitch gratings in chromium after an ultrasonic lift-off showing ~ 15 nm wide lines using the above low keV, cold development process.

Reference

M. A. Mohammad et. al., J. Vac. Sci. Technol. B 28, C6P36 (2010) <u>http://dx.doi.org/10.1116/1.3517683</u>

For further information, please contact Mohammad Ali Mohammad (<u>ebl.nanofab@ualberta.ca</u>) or any NanoFab staff member for assistance. Please also do not hesitate to contact us if you would like to contribute a recipe for EBL process development at the NanoFab.